Halaman

Kamis, 11 Agustus 2011

Handshaking

Handshaking adalah proses negosiasi otomatis yang secara dinamis menentukan
parameter dalam pembentukan kanal komunikasi antara dua entitas normal sebelum
komunikasi melalui kanal dimulai. Ia mengikuti pembentukan fisik saluran precedes normal
dan mentransfer informasi. Contohnya : ketika sebuah komputer berkomunikasi dengan
perangkat lain seperti modem atau printer yang perlu melakukan handshake untuk membuat
sambungan.

Proses negosiasi SSL atau “handshake,” melibatkan pertukaran cryptographic keys,
certificate,dan informasi lain , random data digunakan untuk membuat enkripsi satu waktu,
dan valuenya digunakan untuk mengidentifikasi SSL yang dibuat dari handshake. Handshake
memiliki tiga tujuan:

• Untuk membolehkan client dan server mengatur algoritma yang akan mereka
  gunakan.

• Untuk melibatkan kumpulan dari crypto keys untuk digunakan oleh algoritma
  tersebut.

• Untuk mengautentikasi klien.

Catatan penting bahwa SSL Handshake memerlukan perhitungan yang sangat
kompleks dan perlu komputer dengan performa yang tangguh. Pada akhir cryptographic key
dibuat dan dipertukarkan antara client dan server, enkripsi berikutnya dibuat cukup mudah
sejauh prosesor dari komputer terfokus, namun hal itu tetap menjadikan perlunya performa
tinggi dari server. Terutama ketika handshake dengan jumlah besar terjadi dalam waktu
bersamaan. Pekerjaan ini hanya dapat dilakukan oleh processor khusus/spesial
yang didesain khusus untuk memproses perhitungan matematis yang melibatkan handshake.

Sumber:

IEEE

IEEE
IEEE adalah organisasi internasional, beranggotakan para insinyur, dengan tujuan untuk mengembangan teknologi untuk meningkatkan harkat kemanusiaan.
Sebelumnya IEEE memiliki kepanjangan yang dalam Indonesia berarti Institut Insinyur Listrik dan Elektronik (Institute of Electrical and Electronics Engineers). Namun kini kepanjangan itu tak lagi digunakan, sehingga organisasi ini memiliki nama resmi IEEE saja.
Pada tahun 1980 bulan 2, IEEE membuat sebuah bagian yang mengurus standarisasi LAN (Local Area Network) dan MAN (Metropolitan Area Network).[2] Bagian ini kemudian dinamakan sebagai 802. Angka 80 menunjukkan tahun dan angka 2 menunjukkan bulan dibentuknya kelompok kerja ini.
Berikut ini adalah contoh unit kerja dan bidang yang merekan tangani :

Unit Kerja            Bidang yang ditangani
802.1                     Higher Layer LAN Protocols Working Group
802.3                     Ethernet Working Group
802.11                   Wireless LAN Working Group
802.15                   Wireless Personal Area Network (WPAN) Working Group
802.16                   Broadband Wireless Access Working Group
802.17                   Resilent Packet Ring Working Group
802.18                   Radio Regulator TAG
802.19                   Coexistence TAG
802.20                   Mobile Broadband Wireless Access (MBWA) Working Group
802.21                   Media Independent Handoftt Working Group
802.22                   Wireless Regional Area Network

DIX Ethernet dan IEEE 802.3

Spesifikasi Ethernet yang asli (yang disebut sebagai "Experimental Ethernet") dikembangkan oleh Robert Metcalfe pada tahun 1972 dan dipatenkan pada tahun 1978 dan dibuat berbasiskan bagian dari protokol nirkabel ALOHAnet. Memang, Experimental Ethernet sudah tidak digunakan lagi saat ini, tapi dapat dianggap sebagai protokol Ethernet oleh sebagian kalangan. Ethernet yang dikenal sekarang yang digunakan di luar Xerox adalah DIX Ethernet. Tetapi, karena DIX Ethernet juga dikembangkan dari Experimental Ethernet, dan semakin banyak standar yang juga dikembangkan berbasiskan teknologi DIX Ethernet, komunitas teknis telah menganggap bahwa semuanya adalah Ethernet. Karenanya, penggunaan istilah Ethernet juga dapat digunakan untuk menyebutkan semua jaringan yang menggunakan fungsi dan media yang telah distandarisasi sebagai berikut:

Standar Ethernet             Tahun                Keterangan
Experimental Ethernet     1972         Protokol Ethernet yang pertama, yang mampu   mentransmisikan data melalui kabel koaksial dan topologi bus dengan kecepatan 2,94 megabit per detik.
Ethernet II (DIX 2.0)         1982        Protokol Ethernet hasil pengembangan selanjutnya, yang mampu mentransmisikan data melalui kabel koaksial tipis (thinnet), dengan kecepatan 10 megabit per detik. Pada standar ini juga diperkenalkan field EtherType. Format frame ini juga yang digunakan oleh protokol-protokol di dalam protokol Internet (TCP/IP).
IEEE 802.3                       1983        Protokol Ethernet standar 10BASE5 yang      mampu mentransmisikan data dengan kecepatan 10 Megabit per detik melalui kabel koaksial tebal (thicknet). Protokol ini sama seperti halnya DIX, kecuali pada field EtherType diganti oleh Length, dan sebuah header IEEE 802.2 yang menyertai header IEEE 802.3. Lebih jelasnya lihat di bagian bawah.
IEEE 802.3a                    1985          Protokol Ethernet standar 10BASE2 yang mampu mentransmisikan data dengan kecepatan 10 Megabit per detik melalui kabel koaksial tipis (thinnet).
IEEE 802.3b                    1985                                10Broad36
IEEE 802.3c                    1985          Spesifikasi repeater jaringan dengan kecepatan 10 megabit per detik.
IEEE 802.3d                    1987          Fiber-Optic Inter-Repeater Link (FOIRL)
IEEE 802.3e                    1987                       10Base5 atau StarLAN
IEEE 802.3i                     1990          Standar Ethernet 10BaseT, yang mampu mentransmisikan data dengan kecepatan 10 megabit per detik melalui kabel tembaga yang dipilin (twisted pair).
IEEE 802.3j                    1993           Standar Ethernet 10BaseF, yang mampu mentransmisikan data dengan kecepatan 10 megabit per detik melalui kabel serat optik (Fiber-optic).
IEEE 802.3u                   1995           Standar Fast Ethernet 100BaseTX, 100BaseT4, 100BaseFX, yang mampu mentransmisikan data dengan kecepatan 100 megabit per detik melalui kabel tembaga yang dipilin (twisted pair) dan juga menawarkan fungsi autonegotiation.
IEEE 802.3x                   1997               Full duplex dan flow control
IEEE 802.3y                   1998           Standar Fast Ethernet 100BaseT2, yang mampu mentransmisikan data dengan kecepatan 100 megabit per detik melalui kabel tembaga yang dipilin (twisted pair) kualitas rendah.
IEEE 802.3z                   1998           Standar Gigabit Ethernet 1000Base-X, yang mampu mentransmisikan data dengan kecepatan 1000 megabit per detik (1 gigabit per detik) melalui kabel serat optik (fiber-optic).
IEEE 802.3-1998             1998          Revisi standar dasar yang menggabungkan semua amandemen dan ralat di atas.
IEEE 802.3ab                 1999           Standar Gigabit Ethernet 1000BaseT, yang mampu mentransmisikan data dengan kecepatan 1000 megabit per detik (1 gigabit) melalui kabel tembaga yang dipilin (twisted pair).
IEEE 802.3ac                 1998            Ukuran frame maksimum diperluas hingga 1522 byte (untuk mengizinkan "Q-tag"). Q-tag mencakup informasi Virtual Local Area Network (VLAN) IEEE 802.1Q dan informasi prioritas IEEE 802.1p.
IEEE 802.3ad                2000            Link aggregation untuk saluran-saluran paralel.
IEEE 802.3-2002           2002            Sebuah revisi yang menggabungkan tiga amandemen terakhir dan ralat.
IEEE 802.3ae                2003            Standar 10 Gigabit Ethernet 10GBase-SR,10GBase-LR, 10GBase-ER, 10GBase-SW, 10GBase-LW, dan 10GBase-EW yang mampu mentransmisikan data dengan kecepatan 10000 megabit per detik (10 gigabit).
IEEE 802.3af                 2003              Power over Ethernet (PoE)
802.3ah                          2004               Ethernet in the First Mile
IEEE 802.3ak                2004            Standar 10 Gigabit Ethernet 10GBase-CX4, yang mampu mentransmisikan data dengan kecepatan 10000 megabit per detik (10 gigabit) melalui kabel twin-axial.
IEEE 802.3-2005           2005            Revisi standar dasar yang menggabungkan empat amandemen dan ralat di atas.

Sumber:


Rabu, 10 Agustus 2011

Laporan Aplikasi Wireshark


Pendahuluan
Dalam pelajaran diagnosa LAN kali ini kita mempelajari penggunaan aplikasi Wireshark untuk memahami proses enkapssulasi dan dekapsulasi, selain itu juga untuk memahami metoda komunikasi half duplex yang terjadi.


Sekilas Wireshark,

Wireshark ialah aplikasi yang dapat melakukan analisa packet jaringan sedetail mugkin.






Melakukan proses capturing,
Klik tombol capture, kemudian pilih interface yang akan digunakan kemudian klik strart untuk memulai capturing.







Berikut pengertian dari jendela yang tampak.












Menu : Navigasi menu yang terjadi di Wireshark.
Display Filter : Memfilter paket apa saja yang akan dianalisa.
Daftar Paket : Tampilan paket yang berhasil di capture.
Detail Paket : Detail dari paket yang ditampilkan.
Detail Paket Heksa : Tampilan detail paket yang berbentuk heksadesimal.
Pada daftar (detail) paket tersedia,
-Time : Menampilkan waktu saat paket tertangkap.
        - Source : Menampilkan IP sumber dari paket tersebut.
        - Destination : Menampilkan IP tujuan dari paket tersebut.
        - Protocol : Menampilkan protokol apa saja yang digunakan.  
        - Info : Menampilkan informasi dari paket .
Selanjutnya, buka browser dan buka halaman yang ingin dianalisa, contoh : Google.co.id







Akan terjadi tampilan seperti,










# Metoda half duplex yang terjadi,

Lihat kotak biru, disana membuktikan terjadinya proses half duplex dimana source dan sumber bergantian muncul (alamat IP), ingat metoda half duplex.






Untuk proses enkapsulasi, kita dapat melihat di kolom detail data dimana terdapat informasi mengenai header dari data yang telah tercapture, lihat di enkapsulasi.


Kesimpulan :
Dalam mengamati paket menggunakan wireshark, kita dapat melihat informasi dari paket secara lengkap. Selain itu ternyata banyak sekali jenis aplikasi paket beserta protokolnya, maka dari itu kita memerlukan ketelitian dalam menganalisa paket.

Sumber :


Kamis, 04 Agustus 2011

Tabel Spektrum Gelombang Elektromagnetik

 Spektrum elektromagnetik adalah rentang semua radiasi elektromagnetik yang mungkin. Spektrum elektromagnetik dapat dijelaskan dalam panjang gelombang, frekuensi, atau tenaga per foton.Gelombang elektromagnetik dapat diidentifikasi berdasarkan frekuensi dan panjang gelombangnya. Cahaya merupakan gelombang elektromagnetik sebagaimana gelombang radio atau sinar-X. Mereka dibedakan berdasarkan frekuensi dan panjang gelombangnya.
 Gelombang Radio
 Gelombang radio merupakan gelombang yang memiliki frekuensi paling kecil atau panjang gelombang paling panjang. Gelombang radio berada dalam rentang frekuensi yang luas meliputi beberapa Hz sampai gigahertz (GHz atau orde pangkat 9). Sebelum dirambatkan sebagai gelombang radio, sinyal informasi dalam berbagai bentuknya (suara pada sistem radio, suara dan data pada sistem seluler, atau suara dan gambar pada sistem TV) terlebih dahulu dimodulasi. Modulasi di sini secara sederhana dinyatakan sebagai penggabungan antara getaran listrik informasi (misalnya suara pada sistem radio) dengan gelombang pembawa frekuensi radio tersebut. Penggabungan ini menghasilkan gelombang radio termodulasi. Gelombang inilah yang dirambatkan melalui ruang dari pemancar menuju penerima.
  Oleh karena itu, kita mengenal adanya istilah AM dan FM. Amplitudo modulation (AM) atau modulasi amplitudo menggabungkan getaran listrik dan getaran pembawa berupa perubahan amplitudonya. Adapun frequency modulation (FM) atau modulasi frekuensi menggabungkan getaran listrik dan getaran pembawa dalam bentuk perubahan frekuensinya.
Gelombang Mikro
 Rentang frekuensi gelombang mikro membentang dari 3 GHz hingga 300 GHz. Frekuensi sebesar ini dihasilkan dari rangkaian osilator pada alat-alat elektronik. Gelombang mikro dapat diserap oleh suatu benda dan menimbulkan efek pemanasan pada benda tersebut. Sebuah sistem pemanas berbasis microwave dapat memanfaatkan gejala ini untuk memasak benda. Sistem semacam ini digunakan dalam oven microwave yang dapat mematangkan makanan di dalamnya secara merata dan dalam waktu singkat (cepat).
Dalam suatu sistem radar, gelombang mikro dipancarkan terus menerus ke segala arah oleh pemancar. Jika ada objek yang terkena gelombang ini, sinyal akan dipantulkan oleh objek dan diterima kembali oleh penerima. Sinyal pantulan ini akan memberikan informasi bahwa ada objek yang dekat yang akan ditampilkan oleh layar radar.
Sistem radar banyak dimanfaatkan oleh pesawat terbang dan kapal selam. Dengan adanya radar, pesawat terbang dan kapal selam mampu mendeteksi keberadaan objek lain yang dekat dengan mereka. Di saat cuaca buruk di mana terjadi badai dan gangguan cuaca yang dapat mengganggu pengelihatan, keberadaan radar dapat membantu navigasi pesawat terbang untuk mengetahui arah dan posisi mereka dari tempat tujuan pendaratan.
Sinar Inframerah
Sinar inframerah (infrared/IR) termasuk dalam gelombang elektromagnetik dan berada dalam rentang frekuensi 300 GHz sampai 40.000 GHz (10 pangkat 13). Sinar inframerah dihasilkan oleh proses di dalam molekul dan benda panas. Telah lama diketahui bahwa benda panas akibat aktivitas (getaran) atomik dan molekuler di dalamnya dianggap memancarkan gelombang panas dalam bentuk sinar inframerah. Oleh karena itu, sinar inframerah sering disebut radiasi panas.
Dalam bidang kesehatan, pancaran panas berupa pancaran sinar inframerah dari organ-organ tubuh dapat dijadikan sebagai informasi kondisi kesehatan organ tersebut. Ini sangat bermanfaat bagi dokter dalam diagnosis dan keputusan tindakan yang sesuai buat pasien. Selain itu, pancaran panas dalam intensitas tertentu dipercaya dapat digunakan untuk proses penyembuhan penyakit seperti cacar dan encok.
 Dalam teknologi elektronik, sinar inframerah telah lama digunakan sebagai media transfer data. Ponsel dan laptop dilengkapi dengan inframerah sebagai salah konektivitas untuk menghubungkan atau transfer data dari satu perangkat dengan perangkat lain. Fungsi inframerah pada ponsel dan laptop dijalankan melalui teknologi Irda (infra red data acquitition).
Cahaya atau sinar tampak
Dalam rentang spektrum gelombang elektromagnetik, cahaya atau sinar tampak hanya menempati pita sempit di atas sinar inframerah. Spektrum frekuensi sinar tampak berisi frekuensi dimana mata manusia peka terhadapnya. Frekuensi sinar tampak membentang antara 40.000 dan 80.000 GHz (10 pangkat 13) atau bersesuaian dengan panjang gelombang antara 380 dan 780 nm (10 pangkat -9). Cahaya yang kita rasakan sehari-hari berada dalam rentang frekuensi ini. cahaya juga dihasilkan melalui proses dalam skala atom dan molekul berupa pengaturan internal dalam konfigurasi elektron.
Pembahasan tentang cahaya begitu luas dan membentuk satu disiplin ilmu fisika tersendiri, yaitu optik.
Sinar Ultraviolet
Rentang frekuensi sinar ultraviolet (ultraungu) membentang dalam kisaran 80.000 GHz sampai puluhan juta GHz (10 pangkat 17).
Sinar ultraungu atau disebut juga sinar ultraviolet datang dari matahari berupa radiasi ultraviolet memiliki energi yang cukup kuat dan dapat mengionisasi atom-atom yang berada di lapisan atmosfer. Dari proses ionisasi atom-atom tersebut dihasilkan ion-ion, yaitu atom yang bermuatan listrik. Lapisan yang terdiri dari ion-ion ini membentuk lapisan khusus dalam atmosfer yang disebut ionosfer. Lapisan ionosfer yang terisi dengan atom-atom bermuatan listrik ini dapat memantulkan gelombang elektromagnetik frekuensi rendah (berada dalam spektrum frekuensi gelombang radio medium) dan dimanfaatkan dalam transmisi radio.
Kanker kulit dan penyakit gangguan penglihatan seperti katarak dapat ditimbulkan dari radiasi ultraviolet yang berlebihan. Ganggang hijau sebagai sumber makanan alami dan mata rantai pertama dalam rantai makanan dapat berkurang akibat radiasi ultraviolet ini. ini dapat mengganggu keseimbangan alam dan merupakan sesuatu yang sangat merugikan buat kehidupan makhluk hidup di Bumi.
Sinar ultraviolet juga dapat dihasilkan oleh proses internal atom dan molekul. Sinar ultraviolet juga dapat dimanfaatkan dalam proses sterilisasi makanan dimana kuman dan bakteri berbahaya di dalam makanan dapat dimatikan.
Sinar-X
Sinar-X berada pada rentang frekuensi 300 juta GHz (10 pangkat 17) dan 50 miliar GHz (10 pangkat 19). Penemuan sinar-X dianggap sebagai salah satu penemuan penting dalam fisika. Sinar-X ditemukan oleh ahli fisika Jerman bernama Wilhelm Rontgen saat sedang mempelajari sinar katoda. Cara paling umum untuk memproduksi sinar-X adalah melalui mekanisme yang disebut bremstrahlung atau radiasi perlambatan. Mekanisme ini yang ditempuh oleh Rontgen saat pertama kali menghasilkan sinar-X. Dalam teori radiasi gelombang elektromagnetik diketahui bahwa muatan listrik yang dipercepat (atau diperlambat) akan menghasilkan gelombang elektromagnetik. Selain melalui radiasi perlambatan, sinar-X juga dihasilkan dari proses transisi internal elektron di dalam atom atau molekul.
Sinar Gamma
Sinar gamma merupakan gelombang elektromagnetik yang memiliki frekuensi (dan karenanya juga energi) yang paling besar. Sinar gamma memiliki rentang frekuensi dari 10 pangkat 18 sampai 10 pangkat 22 Hz. Sinar gamma dihasilkan melalui proses di dalam inti atom (nuklir).

  sumber :

Rabu, 03 Agustus 2011

Tabel ASCII

Kode Standar Amerika untuk Pertukaran Informasi atau ASCII (American Standard Code for Information Interchange) merupakan suatu standar internasional dalam kode huruf dan simbol sepertiHex dan Unicode tetapi ASCII lebih bersifat universal, contohnya 124 adalah untuk karakter "|". Ia selalu digunakan oleh komputer dan alat komunikasi lain untuk menunjukkan teks. Kode ASCII sebenarnya memiliki komposisi bilangan biner sebanyak 8 bit. Dimulai dari 0000 0000 hingga 1111 1111. Total kombinasi yang dihasilkan sebanyak 256, dimulai dari kode 0 hingga 255 dalam sistem bilangan Desimal.



Source :


tabel :